F321

MOLES

The mole	 the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro's constant (N Avogadro's constant has a value of 6.02 x 10²³ mol⁻¹. 								
MOLAR MASS The mass of one mole of substance. It has units of $g \mod^{-1}$ or $kg \mod^{-1}$.									
	molar mass = mass of one particle x Avogadro's constant ($6.02 \times 10^{23} \text{ mol}^{-1}$)								
Example	If 1 atom has a mass of 1 mole of atoms will have a mass of	$1.241 \times 10^{23}g$ 1.241 × 10^{23}g × 6.02 × 10^{23} = 7.471g							
Q.1	Calculate the mass of one mole of carbo mass of neutron 1.674 x 10 ⁻²⁴ g, mass of e	on-12 atoms. [mass of proton 1.672 x 10 ⁻²⁴ g, electron 9.109 x 10 ⁻²⁸ g]							

MOLE CALCULATIONS

Substances	mass molar mass	g g mol⁻¹	or or k a	kg g mol⁻¹	moles = m	mass olar mass
Example	Calculate the nu oxygen molecule the relative mass moles	mber of mol es have the t s will be 2 x = <u>mass</u> molar mas	es of ox formula 16 = 32 = ss 3.	ygen molecu O ₂ so the mola <u>4g</u> 2g mol ⁻¹	iles in 4g r mass will be 3 ANS. 0.125	32g mol ⁻¹ mol
Q.2	Calculate the ni 10g of Ca atom: 4g of hydrogen	umber of mole s atoms	es in	10g 4g	g of CaCO3 of hydrogen mole	ecules
	Calculate the m 2 mol of CH ₄ 6 mol of nitroge	ass of n atoms		0.5 6 m	mol of NaNO3 aol of nitrogen ma	olecules

Г

1

Example 1 Calculate the number of moles of sodium hydroxide in 25cm³ of 2M NaOH

$$moles = \frac{molarity \times volume \text{ in } cm^3}{1000}$$
$$= 2 \frac{mol dm^{-3} \times 25}{1000} \text{ ANS. 0.05 mol}$$

Example 2 What volume of $0.1M H_2SO_4$ contains 0.002 moles?

volume = $\frac{1000 \text{ x moles}}{\text{molarity}}$ (re-arrangement of above) = $\frac{1000 \text{ x 0.002}}{0.1 \text{ mol dm}^{-3}}$ **ANS. 20 cm³**

Example 3 4.24g of Na_2CO_3 is dissolved in water and the solution made up to 250 cm³. What is the concentration of the solution in mol dm⁻³?

no. of moles in 1000cm ³ (1dm ³)	= 0.16 moles	ANS.	0.16 mol dm ⁻³ .
no. of moles in 250cm ³	= 4.24g / 106g mol	$^{-1} = 0.04$	1 moles
molar mass of Na_2CO_3	= 106g mol ⁻¹		

<i>Q.3</i>	Calculate the number of moles in	
	1dm ³ of 2M NaOH	250cm ³ of 2M NaOH
	5dm ³ of 0.1M HCl	25cm ³ of 0.2M H ₂ SO ₄
	Calculate the concentration (in moles d	m ⁻³) of solutions containing
	0.2 moles of HCl in $2dm^3$	0.1 moles of NaOH in 25cm ³

EMPIRICAL FORMULAE AND MOLECULAR FORMULAE

Empirical Formula

Description	Expresses the elements in a simple ratio (e.g. CH_2).
	It can sometimes be the same as the molecular formula (e.g H_2O and CH_4)

- *Calculations* You need mass, or percentage mass, of each element present
 - relative atomic masses of the elements present
- Example 1 Calculate the empirical formula of a compound containing C (48%), H (4%) and O (48%)

	С	Н	0
1) Write out percentages (by mass)	48%	4%	48%
2) Divide by the relative atomic mass	48/12	4/1	48/16
this gives a molar ratio	4	4	3
3) If not whole numbers then scale up			
<i>4) Express as a formula</i>	C ₄	H₄O₃	

Example 2 Calculate the empirical formula of a compound with C (1.8g), O (0.48g), H (0.3g)

	С	Н	0
1) Write out ratios by mass	1.8	0.3	0.48
2) Divide by relative atomic mass	1.8 / 12	0.3/1	0.48 / 16
(this gives the molar ratio)	0.15	0.3	0.03
3) If not whole numbers then scale up			
- try dividing by smallest value (0.03)	5	10	1
4) Express as a formula	C₅H	1 ₁₀ 0	

Molecular Formula

Description Exact number of atoms of each element in the formula (e.g. C₄H₈)

Calculations Compare empirical formula relative molecular mass. The relative molecular mass of a compound will be an exact multiple (x1, x2 etc.) of its relative empirical mass.

Example Calculate the molecular formula of a compound of empirical formula CH_2 and relative molecular mass 84.

mass of CH₂ unit	=	14	
divide molecular mass (84) by 14		=	6
molecular formula = empirical formula x 6	=	C_6H_{12}	2

3

F321

MOLAR MASS CALCULATIONS

F321

RELATIVE MASS	Relative Atomic Mass (A _r)	The mass of an atom relative to that of the carbon 12 isotope having a value of 12.000				
	or	average mass per atom of an element x 12				
		mass of an atom of ^{12}C				
	* Relative Molecular Mass (M _r)	The sum of all the relative atomic masses present in a molecule				
	or	average mass of a molecule x 12 mass of an atom of ${}^{12}C$				
	NB * Relative Formu	Ila Mass is used if the species is ionic				

MOLAR VOLUME

At rtp	The mo	(0.024 m ³	mol⁻¹)	
	rtp	Room Temperature and Pressure		

At stpThe molar volume of any gas at stp is 22.4 dm³ mol⁻¹ (0.0224 m³ mol⁻¹)stpStandard Temperature and Pressure (273K and 1.013 x 10⁵ Pa)

example 0.5g of a gas occupies $250cm^3$ at rtp. Calculate its molar mass.

250 cm ³	has a mass of	0.5g	
1000 cm³ (1dm³)	has a mass of	2.0g	x4 to convert to dm ³
24 dm ³	has a mass of	48.0g	x24 to convert to 24dm ³

ANSWER: The molar mass is 48.0g mol⁻¹

Q.4 Calculate the mass of... a) 2.4 dm³ of carbon dioxide, CO_2 at rtp

b) 120 cm³ of sulphur dioxide, SO₂ at rtp

c) 0.08g of a gaseous hydrocarbon occupies 120cm³ at rtp. Identify the gas.

4

Moles				- F321	>				5
Calculations	method	ds inc	lude using • th • th	ne ideal gas ne Molar Vol	equat lume a	tion at st	PV = p	= nRT	Г
	For 1	mole	e of gas	PV	= R T	-			PV = nRT
	for n	mole	s of gas	PV = nRT					
			also	PV = m I	ד <u>ד</u> 1			P١	$V = \frac{m R T}{M}$
	where P provide the providence of the providence		pressure volume number of mo	les of gas	Pasc m³	als (the	(Pa) o ere are	or N n e 10 ⁶	n⁻² cm ³ in a m ³)
		R T	gas constant temperature	lee el gae	8.31 Kelvi	J K [.] in	⁻¹ mol (K =	-1 = °C +	+ 273)
		m M	mass molar mass		g or l g mo	Kg ol ⁻¹	or K	g mo	I-1
Old ui	nits	1 at 1 litr	mosphere is e e (1 dm³) is e	equivalent to	760	mm 1 x	∖/Hg 10 ⁻³ n	or n ³	1.013 x 10⁵ Pa (Nm ⁻²

Example 1 Calculate the number of moles of gas present in 500cm³ at 100 KPa pressure and at a temperature of 27°C.

Ρ	= 100 KF	Pa		=	10000	0 Pa	
V	= 500 cm	1 ³	x 10-	⁶ =	0.0005	5 m ³	
Т	= 27 + 27	73		=	300 K		
R	= 8.31 J	K-1 mol	-1	=	8.31		
PV=	nRT	:. I	n :	= PV	=	100000 x 0.0005	= 0.02 moles
				RT		300 x 8.31	

Example 2 Calculate the relative molecular mass of a vapour if 0.2 g of gas occupy 400 cm³ at a temperature of 223°C and a pressure of 100 KPa.

$$P = 100 \text{ KPa} = 10000 \text{ Pa}$$

$$V = 400 \text{ cm}^3 \times 10^6 = 0.0004 \text{ m}^3$$

$$T = 227 + 273 = 500 \text{ K}$$

$$m = 0.27g = 0.27g$$

$$R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1} = 8.31$$

$$PV = \frac{mRT}{M} \qquad \therefore M = \frac{mRT}{PV} = \frac{0.27 \times 500 \times 8.31}{100000 \times 0.0004} = 28.04$$

Calculation The volume of a gas varies with temperature and pressure. To convert a volume to that which it will occupy at stp (or any other temperature and pressure) one use the relationship which is derived from Boyle's Law and Charles' Law.

$$\frac{\mathbf{P}_1\mathbf{V}_1}{\mathbf{T}_1} = \frac{\mathbf{P}_2\mathbf{V}_2}{\mathbf{T}_2}$$

where **P**₁ initial pressure

- V₁ initial volume
- T₁ initial temperature (in Kelvin)
- P₂ final (in this case, standard) pressure
- V₂ final volume (in this case, at stp)
- T₂ final (in this case, standard) temperature (in Kelvin)
- *Calculations* Convert the volume of gas to that at stp then scale it up to the molar volume. The mass of gas occupying 22.4 dm³ (22.4 litres , 22400cm³) is the molar mass.
- *Experiment* It is possible to calculate the molar mass of a gas by measuring the volume of a given mass of gas and applying the above equations.

Methods • Gas syringe method

- Victor Meyer method
- Dumas bulb method
- Example A sample of gas occupies 0.25 dm³ at 100°C and 5000 Pa pressure. Calculate its volume at stp [273K and 100 kPa].

P_1 initial provided V_1 initial volume T_1 initial tended	essure blume nperature	= 5000 Pa = 0.25 dn = 373K	$\begin{array}{ccc} a & P_2 \\ n^3 & V_2 \\ & T_2 \end{array}$	fina final tem	l pressure volume perature	= 100000 Pa = ? = 273K	
thus	$\frac{5000 \times 6}{373}$	0.25 =	$\frac{100000 x}{273} V_2$				
therefore	<i>V</i> ₂ =	273×50 $\overline{373 \times 10}$	000 x 0.25 100000	=	0.00915 d	/m³ (9.15 dm ²	3)

Moles

F321

Gay-Lussac's Law of Combining Volumes

Statement "When gases combine they do so in volumes that are in a simple ratio to each other and to that of any gaseous product(s) "

N.B. all volumes must be measured at the same temperature and pressure.

Avogadro's Theory

Statement "Equal volumes of all gases, at the same temperature and pressure, contain equal numbers of molecules"

Calculations Gay-Lussac's Law and Avogadro's Theory are used for reacting gas calculations.

example 1 What volume of oxygen will be needed to ensure that 250cm³ methane undergoes complete combustion at 120°C? How much carbon dioxide will be formed?

$CH_{4(g)}$	+ 20 _{2(g)}	>	CO _{2(g)}	+ 2H ₂ O _(g)	
1 molecule	2 molecules		1 molecule	2 molecules	
1 volume	2 volumes		1 volume	2 volumes (a gas at	120°C)
250cm ³	500cm ³		250cm ³	500cm ³	

ANS. 500cm³ of oxygen and 250cm³ of carbon dioxide.

Special tips An excess of one reagent is often included; e.g. excess O₂ ensures complete combustion

Check the temperature, and state symbols, to check which compounds are not gases. This is especially important when water is present in the equation.

example 2 20cm³ of propane vapour is reacted with 120cm³ of oxygen at 50°C. Calculate the composition of the final mixture at the same temperature and pressure?

$C_{3}H_{8(g)}$	+ 50 _{2(g)}	>	3CO _{2(g)}	+	4H ₂ O _(I)		
1 molecule	5 molecules		3 molecules		4 molecu	les	
1 volume	5 volumes		3 volumes		negligible	(it is a liquid a	at 50°C)
20cm ³	100cm ³		60cm ³				
:	20cm ³ will be ur	nused					

ANSWER 20cm³ of unused oxygen and 60cm³ of carbon dioxide.

7

i) convert to stp	$\frac{2 \times 278}{298} = \frac{1 \times V}{273}$	V = 278 x $1 x 2$	$\frac{2 \times 273}{298} = 509 cm^3$
ii) convert to molar vol	ume 1g 1/509g 22400 x 1/509g	occupies occupies occupies	509cm³ at stp 1cm³ 22400cm³
therefore	44g	occupies	22.4 dm ³ at stp

example 3 1g of gas occupies 278 cm^3 at 25°C and 2 atm pressure. Calculate its molar mass.

ANSWER: The molar mass is 44g mol⁻¹

8 -

Q.5	• Convert the following volumes into m ³								
	a) 1dm ³	<i>b</i>) 250 <i>cm</i> ³	c) $0.1cm^3$						
	• Convert the following temperatures into Kelvin								
	a) 100°C	<i>b)</i> 137°C	c) -23°C						
	• Calculate the volume of 0.5 mol of propane gas at 298K and 10 ⁵ Pa pressure								
	• Calculate the m at a temperatu	ass of propane (C_3H_8) c re of 273K and a pressu	ontained in a 0.01 m³ flas re of 250kPa.	k maintained					

84.4 lom I.0 (b Calculate the mass of... ŧ`Õ _{ғ-}шр 10ш ү ^{E-}mb lom I.0 $(\varepsilon - 0I \times \zeta)$ low $\zeta - 00.0$ још 5 10m č.0 *jow 7* Calculate the number of moles in E'Õ $889I = 882 \times 9$ $\delta_{t} = \delta_{t} I x g$ $2 x I 68 = 328 mol of CH_4$ $8\xi.54 = 8\xi8 x \xi.0$ *lom* ^{*t*} = *I*/^{*t*} *10W Z* = *Z*/*t*∕ 1000 I.0 = 00I/0I $10m \ 25.0 = 04/0I$ *7*[.]*Õ*

'8₈₇-01 x 6800.2

ΙÕ

- Cucutate the mass of ..., cucutate the mass of ..., the
- **E** \mathfrak{L} **Convert the following volume simulov griwollof shi travely** \mathfrak{L} **Convert the following volume simulation** \mathfrak{L} \mathfrak{L}
- Convert the following temperatures into Kelvin a) 373K (b) 400K (c) 250K

Moles